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In the present paper we prove the almost everywhere convergence of the Fejér
means of integrable functions on the group of 2-adic integers.  © 1997 Academic Press

1. INTRODUCTION AND RESULTS

We follow the standard notions of dyadic analysis introduced by the
mathematicians F. Schipp, P. Simon, and W. R. Wade (see e¢.g. [ Sch]) and
others. Denote the set of natural numbers by N :={0, 1, ..}, the set of
positive integers by P:=N\{0}, and the unit interval by I:=[0,1).
Denote by A(B) = |B| the Lebesgue measure of the set B(B < I). Denote by
L7(I) the usual Lebesgue spaces and by |||, the corresponding norms

(1<p< ). Set
1
J:z{{zpn, p2~I—n >:p, neN},

the set of dyadic intervals, and for given x €/ let /,(x) denote the interval
I,(x)e.# of length 27" which contains x(neN). Also use the notion
I,:=1,(0)(neN). Let

o0
x=) x,27"*Y

n=0
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the dyadic expansion of x € I, where x, =0 or 1 and if x is a dyadic rational
number (x € {p/2": p, ne N}) we choose the expansion which terminates
in 0’s. The 2-adic (or arithmetic) sum a+b:=Y"_r,2 "+ Y (a,bel),
where bits ¢,,, r,,€ {0, 1}(ne N) are defined recursively as follows: ¢_, :=0,
a,+b,+q,_,=2q,+r, for neN. (Since ¢,, r, take on only the values 0,
1, these equations uniquely determine the coefficients ¢, and r,,.) The group
(I, +) is called the group of 2-adic integers. Set

&(t) :=exp(2mt) (teR),
where 1=(—1)"2 Set

Xo
2;1+1

X
Uz/z(x)::8< + e +

7" > (xel, neN)

and
0
nj
= l_[ Dz/a
n=0

where Non=>7n,2" (n,e{0,1} (ieN)). It is known [Hew] that the
system (v,, neN) is the character system of (I,+). Denote by f(n):=
{; fo,di (neN), D,:=>7_4v,, and K,:=(1/n) X;_| D, (neP) the
Fourier coefficients, the Dirichlet kernels, and the Fejér kernels, respec-
tively. It is also known that

1 n
= 2 S

0, /(0= Jx) K, (y+x) difx

_1!
n

i [ 760 Duy ) dix)

5 ([, 050 i 5,0

Y fhv(y)  (neP,yel.
j=0

k

S |-

I M=

~

N

S|
~
Il

We prove

THEOREM 1. o, f— f ae. (feL'(I)).

Theorem 1 for the general case (for the Fejér means the group of p-adic
integers) is the conjecture of M. H. Taibleson [ Tai, p. 114.]. Theorem 1 with
respect to the Walsh—Paley system on the Walsh group is proved by Fine
[Fin]. This result with respect to the p-series fields is due to Taibleson



90 G. GAT

[ Tai2]. Later, this result was generalized for the so-called bounded Vilenkin
groups with respect to the Vilenkin system by Pal and Simon [ P-S]. The
noncommutative case is discussed by the author [ Gat].

In order to prove Theorem 1 we need

LemMA 2 ([S-W1]).

(o8]

D,(z)=v,(z) } n(—=1)7Dyl(2),

j=0
where
2k if zel,
Dzk(z)z{o i’ z¢1;, (neP, keN, zel).

LEMMA 3. Let A =7 be fixed natural numbers. Then,

[ sup [Ky(2)] diz) <2742

N\lry1 N>24

Throughout this work ¢ >0 will denote an absolute constant which will
not necessarily be the same at different occurrences.

The so-called dyadic Hardy space H is defined as follows [Sch, Sim].
A function a € L™([) is called an atom, if either a =1 or « has the following
properties: suppa<l,, |a|.,<|I,|"", [,a=0, for some I,e.7. We say
that the function f belongs to H, if f can be represented as f =37, 4;a;,
where a/s are atoms and, for the coefficients 4; (ieN), >, [1;| < oo is
true. It is known that H is a Banach space with respect to the norm

1Al i=inf 3 14,1,
i=0

where the infimum is taken over all decompositions f=> 2, A,a,€ H.
Denote by

Tf:=sup |o, fI  (feL")

the maximal function of the Fejér means of f. We prove that the operator
T is of type (H, L").

Tueorem 5. |71l <c [If | w (f € H).
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THEOREM 6. |{Tf>A}|<c|fl,/4 for all feL'(I), A>|f|,, and
ITfl,<c, I fll, (feL?(I), 1 < p<oo). That is, operator T is of weak type
(1, 1) and of type (p, p) for each 1 < p < c0.

2. PROOFS

We need the following decomposition lemma of Calderon—Zygmund
type.

LemMMA 4 ([Sch, CZ]). Let feL'(I), 1> |f|l,. Then there exists a
decomposition I=F O F such that

Jnd. =T (i#k), Ji=1.(x), (k;eN, xVel, ieP),
I foll o <24,

suppfiSAi [ =0 1] 1fI<4i (keP)
k k

EL < /1 /2

Proof of Lemma 3. LetNan=Y" n2 (n,=1),n":=n,24+ ... +
n,2° (s<A,s, AeN). Set

b—1
Ka,h(z):: Z Dk(z) a,bEP,ZEI,
k=a

Suppose that s>1, zeI,\I,,,. By Lemma 2 we have

nl$) 25— 1

Knm, 25(2) = z Dl‘(z)

k= nl)

n+25—1 sr—1 ) n®) 25 —1
> <Z kj2’> () + Y k27(=1) u(2)
j=0

K — nls) j= k=nl)

DES)

Since 2% |n', then k=n"+1 (0</<2%). We get v,(z)=v,0,,(2)=
v,0(z) v,(2). Thus (7 <s),
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=0,0(z) #(2) Z U];(Z)a

k=0

where ¢(z) does not depend on k. Since

k() = CISNDUURE T SO .2 BRIV
vzr(z)—s<k,<2+ +2T+1>>—8<2>—( 1)*,

we get 3! =0. Consequently,

s—1 Zj Zo
kk;wkt kTE Jgr kj §+ +2j+1 .

That is, |K,w, | does not depend on n*. Thus,

2

Ko, 20(2)| = | | =27

sup |KN,25|
INL4) 24415 N> 24
25| N
4t so! z; z
— J 0
_? Z Z nr8<z n‘/<2+"'+2j+l>>‘
Zrgls s Zs—1 | Rpy ey g J=T
47 s—1
ni
D T N Y | OB
Zrgls e Zs—1 1 Pegly wnfis—1 j=1+1
4‘: 2s 1/2 s—1 p 1/2 3
ni— ks .
sF .z, 2 I wre) -1
Zeds e Zs—1 NMrglsenHs—1 j=T+1
CT1s s Kg—1

as we find with the help of the well-known Cauchy—Buniakovskii inequality:

Vi)
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Consequently,
1 s—1 §—2
ni—kj nj—kj
Z Z n v, (z)=2 Z n Uy ’(2).
Z541=0 neq1,nng—1 j=t+1 Negpl,enfs—1 j=1+1
T 15 e ks —1 Koy o ks—1
ng_1=ky_1
Thus,
3 4‘: 25 1/2 s—2 1/2
ni—kj
=33 2 ¥ T owte)
Ztdls e Z5—2 Mrglsenfs—1 J=T+1
Ket1s o Ks—1
ng_ | =ky_|
41 2s 1/2 s—3 1/2
—__ (= 2 nj—kj —
_2s < ‘r> {2 z Z n U2/ (Z)} - .
Zr4 15 e Z5—3 Nrg]y ey Ns—1 Jj=t+1
Keg1s o Kg—1
ni=ki(i=s—1,5s—2)
That is,
3 4r 25 1/2
— —17\1/2 +17\1/2
Z<c2g<21—> (25 123 1)/<C(2s ‘[)/.

That is, for s > 7, we have

sup Ky, »| <c /2°F (1)

IN\I 41 2441 N>24
PN

By elementary calculation we have for 24 < N<24*! (zel),

4
NKy(z)= Y N,Kyi+1, 5(2),

A
INKy(DI< Y Ky a(z)]  (QAKN<24+'ze]).
Set J©:=I\I, .

f sup  |NKy(z)| difz)

T oA+l S N> 24

T A
<C z J‘ Sup |KN(S+1)’ 25| + Z J‘ Sup |KN(S+”,25
5s=0

T oA+l N> 04 s=741 Toodtls N4
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By Lemma 2 we have that for ze I \I, ., D,(z) <c2 for any neN;
thus |Kye+n, 25(2)| <¢2°77 for all N, seN. This gives an upper bound for
>

D

N

<c27.

LS|
¢ X
= DT+l
The upper bound for 3% is implied by (1) as follows:

5 A
ch Z (2s+r)1/2.

s=1+1
Consequently,
21 2A+r 1/2
j sup  |Ky(2)| di(z)<c =+ (7/‘)
JT A+l o = i 2 2
This gives

o 2T (2,]+r)1/2
[ sup Ky ditz)<e 3 <2,.+c_><czw>/z,
7 j=A4

N4 2./
Lemma 3 is proved. |

Proof of Theorem 6. It is known that HK,,H1 < c¢ [S-W]. Consequently,
operator T is of type (oo, o0) (i.e., HTfH <c | fll., forall feL*(I)). We
prove that T is of weak type (1,1) (ie., [{If>A}|<c|f],/A for all

feL'(D), A= 11

Let > ||f]l,. Lemma 4 gives |a, fol .. <c4,

frens: T<§ 5 >C;H

1 ee}
<c At — 1f;
T N

[{xel:Tf(x)>2ci}|

< Tfo>cA}| + |Fl +

| B
=! o+ — B
clfll/a+— _,;

(Note that operator T is sublinear.)

k, kj—1

NFeN,= U (LN (x9) = U J;

=0
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Denote by .«Z, the g-algebra generated by the sets 7,(x) (xel) and by E,
the conditional expectation operator with respect to ./, (neN). Since
S,k(\m f;=0 and supp f; =1, (x"), then E, f,=0 (jeP). That is, n <2%
1mphes S, fi=Su(Ex, [;)= 0. Consequently, 1f,=sup, . |0, f;|. This

gives

kj—1

= Y B,
=0

BJ<ZJ sup
—o0 V]

nz=2ki

BI<[ [ 11001 sup 1K, (z—x)] di(z) di(x)

j n =2k

(— denotes the inverse of +). Lemma 3 gives B/ <cf,, | f,(x)| 2" %" dA(x),
that is, B’<c|f;|, (jeP). This implies [{Tf>2ci}|<c|fl,/A+ (1/ck)

2o Il <c |l flli /4. Consequently, we proved that operator T is of
weak type (1, 1). Since T is of type (oo, c0) and of weak type (1, 1) then
the interpolation theorem of Marczinkievicz [ Sch] implies Theorem 6. ||

Proof of Theorem 1. Since for a polynomial P(x)=>}5 c;v,(x)
(cos - €, € C, neN, x e ) we have the relation ¢, P(x) - P(x) (n — o) for
all xel and since the set of polynomials is dense in the set of integrable
functions in I, then by the usual density argument (see [ Sim, Sch]) and by
the weak (1, 1) typeness of operator T follows the a.e. convergence o, f — f
for all fe L'(I). The proof of Theorem 1 is complete. |

Proof of Theorem 5. Let a be an atom (a#1 can be supposed),
I,:=1.(x), ||la|., <2* for some keN and xel Then n<2* implies
S,a=S,E,a=0. That is,

Ta=sup |o,dal.

n=2k
Lemma 3 gives
k—1
[ ma=3 | sup ([ a(y) K, (== y) diy) | i)
NI, j=0 "L\ 1(x) nz2k |V Ii(x)
k—1
<Y [ e | sup [K,(z— )| di(z) di(y)
j=0 “Ik(x) Li(x)\Ij+1(x) n=2k

k—1
<e Y [l @R <elal <c
j=0 "Ik(x)
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Since Theorem 6 gives that operator T is of type (2,2) (ie., |[Tfl.<c || f]»
for all fe L*(I)), we have

|Ta|,= Ta+| Ta

NI, I,
<c+ L' || Tall,<c+ 27 |al,

<c+27FPR2 L,

That is, ||7a||; < ¢ and consequently the sublinearity of T gives

17711 < Z AR FEAFES Z

<clfllu

for all /=32, A;a,€ H. The proof of Theorem 5 is complete. |i
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